Longitudinal predictors of early mathematics: Number-specific versus domain-general mechanisms?

Caroline Hornung, Martin Brunner, Christine Schiltz, \& Romain Martin
EMACS research unit, FLSHASE, University of Luxembourg, Luxembourg

Introduction

What is a good basis for developing mathematical competencies?
While some authors propose that number-specific abilities primarily contribute to early math development, other authors suggest that domain-general abilities are key.

- The number-specific perspective emphasizes the role of nonverbal and symbolic number sense for math development [1; 2] .
- The domain-general perspective emphasizes the role of domain-general mechanisms such as working memory, language processing, processing speed and abstract reasoning in early number and math development [3-5].

Hypothesis

Number-specific and domain-general abilities both contribute to kindergarten numeracy and Grade 1 math development.
However these underlying mechanisms might contribute differentially to early numeracy and math outcomes.
Aim
This longitudinal study investigates the concurrent contributions of number-specific and domain-general abilities as assessed in kindergarten on individual differences in early numeracy (kindergarten) and in math competencies (Grade 1).

Method

2 measurement waves
In kindergarten:

- N= 165
-Mean age $=6$ years, 3 months; SD $=4$ months -Parental socio-economic background was diverse -35.2\% first language $=$ Luxemburgish -50.9\% boys
-Individual testing (2 sessions, see measures in table 1)
-Raven's Colored Progressive Matrices
-British Picture Vocabulary Scale
In grade 1:
- N=151
-Mean age $=7$ years, 2 months; $\mathrm{SD}=4$ months
-Group testing (2 sessions, see measures in table 2)

Results

1. WM is key for developing early numeracy

2. Early numeracy and receptive vocabulary predict problem solving in grade 1

3. Early numeracy, fluid intelligence and processing speed predict arithmetic in grade 1

4. Early numeracy and fluid intelligence predict symbolic number sense (number line) in Grade 1

Conclusions

The present results emphasize:
(a) the influence of WM on early numeracy skills [5; 6]
(b) the predictive power of early numeracy skills for Grade 1 math outcomes [1; 7]
(c) the importance of verbal processing for problem solving [4]
(d) the predictive power of fluid intelligence for arithmetic and symbolic number sense
(e) the role of processing speed for arithmetic performance

References

${ }^{[1]}$ Jordan, N. C., Glutting, J., \& Ramineni, C. (2010). The importance of number sense to mathematics achievement in first and third grades. Learning and Individual Differences, 20(2), 82-88. doi:10.1016/J. lindif.2009.07.004
$[2]$ Landerl, K., \& Kölle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of Experimental Child Psychology, 103(4), $546-565$. doi:10.1016/j.jecp. 2008.12 .006
$[3]$ Bull, R., Espy, K. A., \& Wiebe, S. (2008). Short-term memory, working memory and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement. Developmental Neuropsychology, 33 , 205-228. doi:10.1080/87565640801982312

[7] Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L., \& Bryant, J. D. (2010). The contributions of numerosity and domain-general abilities to school readiness. Child Development, 81(5), 1520-1533. doi:10.11111..1467-8624.2010.01489.x
Acknowledgments: We wish to thank all participating children and teachers from schools from 4 municipalities in Luxembourg (Diekirch, Differdange, Luxembourg-City, and Mersch).

